
國立清華大學

物理系

碩士學位論文

個體差異性對交通系統內相變的影響

Effect of individual difference on the

jamming transition in traffic flow

學號姓名 : 108022503 賴易杰 (Yi-Chieh Lai)

指導教授 : 吳國安 (Kuo-An Wu)

中 華 民 國 一 一 ⃝ 年 六 月



Effect of individual difference on the

jamming transition in traffic flow
A Thesis Presented to

the Department of Physics at

National Tsing Hua University

in Partial Fulfillment for the Requirement of

the Master of Science Degree Program

By

Yi-Chieh Lai

Advisor

Prof. Kuo-An Wu

June 2021



Abstract

The individual difference, particularly in drivers’ distance perception, is intro-

duced in the microscopic one-dimensional optimal velocity model to investigate

its effect on the onset of the jamming instability seen in traffic systems. We show

analytically and numerically that the individual difference helps to inhibit the

traffic jam at high vehicle densities while it promotes jamming transition at low

vehicle densities. In addition, the jamming mechanism is further investigated by

tracking how the spatial disturbance travels through traffics. We find that the

jamming instability is uniquely determined by the overall distribution of drivers’

distance perception rather than the spatial ordering of vehicles. Finally, a gener-

alized form of the optimal velocity function is considered to show the universality

of the effect of the individual difference.

Keywords. active matter, traffic model, phase transition, individual difference



摘要

藉由將個體差異性引入一維微觀尺度的交通模型，我們同時定性與定量上分析

個體差異性如何影響交通系統。我們發現在高密度的情況下存在適當個體差異

性可以有效降低交通系統的不穩定度，並減緩塞車的現象。此外，我們藉由研

究高密度車流如何在交通系統中傳播發現一個系統的發生塞車與否只和個體差

異如何被選取有關，與個體差異如何在空間中分佈並無太大關連。最後，此理

論所推導出的結果可以被拓展至其他具有同性質的交通模型上。
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Notation

Table 1: Notation Table. This table only includes parameters that are crucial to

this article. The definition of few parameters, which are not included in this table,

can be found in the chapter that these parameters first appear.

Symbol The physical meaning of the parameter

L The length of the track.

N The number of vehicles in the system.

τ Drivers’ reaction time.

∆xn The interval between the nth driver and the (n+ 1)th driver.

vn The velocity of the nth driver.

∆vn
The velocity difference between the nth driver, and the (n + 1)th

driver. i.e. ∆vn = vn+1 − vn

V The desired velocity function.

x
(0)
n The equilibrium position of the nth driver.

yn The perturbation exerts on the nth driver.

ỹk The kth Fourier component of the perturbation.

wn The distance perception of the nth driver.

w̃k The kth Fourier component of the distance perception.

f0

The derivative of desired velocity at equilibrium state divide

by w, which is a constant when drives are identical. i.e.
1
w

dV (w∆x)
d∆xn

∣∣
∆xn=∆x

(0)
n

f1

The derivative of desired velocity at equilibrium state divide by

wn when the individual difference is taken into account. i.e.
1
wn

dV (wn∆xn)
d∆xn

∣∣
∆xn=∆x

(0)
n

w̄ The mean value of the distance perception.
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σ The standard deviation of the distance perception.
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Chapter 1

Introduction

In recent years, researches on the active system have attracted tons of interest

due to several reasons, such as the existence of multiple degrees of freedom and

self-driven properties. One of the most fascinating features of this system is that

they typically exhibit a spontaneous phase transition from a uniform state into an

inhomogeneous state [3, 4].

The traffic system is one of the most well-studied active systems, of which the

studies dates back to the early 20th century. It perfectly illustrates the dynamical

transition to a jammed state even before the road capacity is reached, as everyone

experiences on a daily basis [5, 6]. The jamming transition could be attributed

to various factors such as car accidents, traffic bottlenecks, etc. Besides that,

sometimes, the traffic jam could also occur for no apparent reasons, which is

known as the “phantom traffic jam”.

An understanding of the underlying dynamics can begin with mathematical

models that use different methodologies, such as microscopic particle-based mod-

els [7, 8, 9, 10, 11, 12, 13, 14, 15] which model vehicles in a traffic system as

interacting particles. This method provides a way to investigate the detail mecha-

nism behind jamming formation. However, this method faces difficulties in terms

of simulation when the number of vehicles increases. Another perspective that

approximates the traffic system with an acceptable amount of information loss

is the macroscopic continuum models [16, 17, 18], in which traffic systems are

described as a hydrodynamic-like system. With the help of continuity equations

and Navier-Stokes like equations, one can specify the state of a traffic system.
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Obviously, the deficiency of the macroscopic models is that the details regarding

the mechanism behind jamming transition is obscured. To overcome this problem,

other models such as mesoscopic Boltzmann-like models [19, 20] were developed.

Even though this method provides a way to fomulate the relationship between the

driver’s behavior and jamming formation in the thermodynamic limit, it still has

no choice but to use certain artificial assumptions, such as assuming Gaussian-like

velocity distributions in order to specify traffic states. Since the investigation of

the relationship between individual differences and jamming formations is what

we desire, due to the reasons mentioned above, the choice of the microscopic model

can help us to understand the mechanism behind it.

One of the successful microscopic models, is the so called optimal velocity

model proposed by Bando et al. [11], where a headway-dependent optimal veloc-

ity is put into the equation of motion and the individual difference of drivers is

discarded for simplicity. Bando et al. showed analytically and numerically that

traffic congestion is spontaneously induced when the relaxation time of drivers is

slower than the rate of change in the optimal velocity as the distance to the vehicle

in the front changes. In addition, Bando et al. showed that the inhomogeneous

state formed in the model is composed of two different states: a free flow state and

a congested state with two specific propagation velocities, which is consistent with

the observation of highway traffic [21, 22, 23]. Besides the headway-dependent op-

timal velocity, there are other realistic factors being considered in traffic models,

such as the relative-velocity dependent optimal velocity [14], the lane-changing

effect in a multi-lane traffic system [24, 25], the size effect due to multi-species

vehicles [26, 27, 28], temperament of drivers [29, 30], etc.

Regardless, the assumption of identical drivers is commonly employed in traffic

models for simplicity. However, drivers are expected to perceive the change of sur-

roundings differently as one would expect for different individual biological beings

in general. Furthermore, it is shown that a wide scattering of synchronized states

seen in the fundamental diagram can be reproduced for a traffic model considering

a mixture of different vehicle types like cars and trucks, which indicates the impor-

tance of the individual difference [28]. Recent study by Tang et al. incorporated

the individual difference of drivers’ perception ability in the macroscopic contin-
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uum model, which showcased the close relationship between individual differences

and the scattered data in the fundamental diagram [31].

In this study, we investigate the effect of individual differences, in particular

the drivers’ distance perception, on jamming transition using Bando’s microscopic

model. We show analytically and numerically that the individual difference affects

the phase transition significantly, and the individual difference always suppresses

traffic jams at high vehicle densities. Furthermore, quiet interestingly, we found

that the spatial ordering of drivers is irrelevant to the jamming transition.

This thesis is organized as follows: In Chapter 2, we briefly review the concepts

of microscopic models and focus on the optimal velocity model by Bando et al..

In Chapter. 3, the individual difference in the drivers’ distance perception is

introduced using Gaussian random fields, and linear stability analysis combined

with a perturbation theory are employed to investigate the effect of individual

differences on the jamming transition quantitatively. To further understand the

jamming mechanism, we take a closer look at how a headway disturbance travels

through traffic. We find that the jamming transition is closely related to the

overall distribution of drivers’ distance perception rather than the spatial ordering

of vehicles. Finally, we extend the optimal velocity model to show the universality

of the effect of the individual difference in Sec. 3.2. The comparison between

widely scattered empirical data and simulation results will be discussed in Chapter

4. In Chapter. 5, the summary and the discussion of each chapter will be included.

Future works will also be suggested in this chapter.
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Chapter 2

Bando’s Model

In microscopic model, drivers in a traffic system are imagined as interacting

particles. Each driver tries to adjust velocity according to the stimulus coming

from the distance in front ∆x, the relative velocity with leading vehicles ∆v, and

driver’s velocity v. However, since there is reaction time preventing drivers adjust

to the velocity they desired instantaneously, they will try to adjust their velocity

to the desired velocity V (∆x,∆v, v) coming from the condition τ times before,

which means

v(t+ τ) = V (∆x,∆v, v) , (2.1)

where V (∆x,∆v, v) is the desired velocity for driver in the condition (∆x,∆v, v).

If the reaction time is small enough, equation (2.1) can be expanded as

dv

dt
=

V (∆x,∆v, v)− v

τ
, (2.2)

which represents the driver will relax to the desired velocity in the time scale τ .

To prevent confusion, in the remaining article, τ in Eq. (2.2) like equations will be

called ”relaxation time” to compare with ”reaction time” in Eq. (2.1) like equa-

tions. Though there are many choices about desired velocity; however, they should

at least satisfy the following rules. First of all, to avoid accidents, the desired ve-

locity should tend to zero when the distance in front decrease to zero, which means

lim∆x→0 V (∆x,∆v, v) = 0. Secondly, even though there is no vehicles in front, the

driver will never infinitely accelerate. Therefore, lim∆x→∞ V (∆x,∆v, v) = Vmax

where Vmax is the maximum velocity due to speed regulation, car performance,

and so forth.
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In 1995, Bando et al. proposed a well-known optimal velocity model with N

vehicles in a surpassing prohibited, single lane closed loop of length L, in which and

the driver of n− th vehicle adjusts its velocity vn only according to its distance to

the vehicle in front, ∆xn = xn+1−xn, where xn is the location of n−th vehicle[11].

Therefore,

ẍn =
V (w∆xn)− ẋn

τ
. (2.3)

A simple optimal velocity function introduced by Bando et al. is

V (∆xn) = tanh (w∆xn − h) + tanh (h) .

It is clear that the choice of desire velocity satisfies the two necessary rules. Two

parameters, w and h, are chosen to describe the behavior of drivers. The shift of

hyperbolic tangent h describes the condition when there is small interval in front,

drivers tend to maintain small velocity until a comfortable distance is reached. The

other parameter, w, describes the distance perception of driver. Obviously, drivers

with large w (poor distance perception) adjust their velocity more abruptly than

those with small w (well distance perception) when the distance in front decreases

by the same amount; and w is always positive. The dynamical behavior of this

system is readily obtained by linear stability analysis around homogeneous state.

For identical drivers, the homogeneous state is drivers with equal distance and

driving with same velocity, which means

x(0)
n (t) = nb+ V (b) t, (2.4)

where b = L/N represents equal distance in equilibrium state. Now assume small

fluctuation is applied to the equilibrium state of this system, xn (t) = x
(0)
n (t) +

yn (t). Inserting fluctuations into equation (2.3), a linearized equation of yn will

be obtained as

ÿn =
1

τ
wf0∆yn −

1

τ
ẏn, (2.5)

where

f0 ≡
1

w

dV (w∆xn)

d∆xn

∣∣∣∣∣
∆xn=∆x

(0)
n

. (2.6)
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Due to the closed loop boundary condition, N coupled equations (2.5) can be

easily analyzed in the Fourier space,

yn =

N/2∑
k=−N/2+1

ỹke
iαkn, (2.7)

where αk = 2πk/N . In Fourier space, equation (2.5) can be rewritten as

¨̃yk +
1

τ
˙̃yk =

wf0
τ

(
eiαk − 1

)
ỹk. (2.8)

Apparently, equations in Fourier coordinates are decoupled with each others. It

turns out to be an eigenvalue problem in which eigenvalue with largest real part

onset the instability of this system, and solutions can be deduced by setting ỹk ∝

ezkt. Since the neutral stability condition occurs when the perturbation neither

growth nor decay, which means the real part of zk should be zero, we can suppose

a pure imaginary eigenvalue zk = iuk to deduce the neutral stability condition.

The real part and imagine part of equation (2.8) becomes
−u2

k = wf0 (cosαk − 1) /τ

uk/τ = f0
τ

sinαk

. (2.9)

Eliminating the variable uk, the neutral stability condition can be obtained, and

the instability will occur when

f0 >
1

2τ cos2 (αk/2)
(2.10)

is satisfied. The physical interpretation of instability condition can be realized

as the competition between two time scales, τ and 1/f0. The first time scale τ

represents the relaxation time of drivers. The second time scale 1/f0 describes how

abrupt drivers change their desired velocity when the distance in front changes. As

the relaxation time τ becomes larger than 1/f0, drivers can’t adjust their velocities

fast enough as they desired, then instability occurs. The simulation results that

are reproduced by us can be seen in Fig. 2.1 and 2.2.

Evidently, the choices of desired velocity influences the evolution of the traffic

system and are usually set to fit the phenomenological experiments data[14, 32].

However, the instability can be always realized as the competition between the

relaxation times and others time scales whatever the model is chosen.
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Figure 2.1: Simulation results of jamming transition in the system with global

density set to 1 and total vehicles number set to 32. This figure only shows

part of the simulation results, and mainly focus on one duration in which the

jamming transition has occurred. Each line presents the trajectory of a single

vehicle. The blue line is the trajectory of the 15th vehicle. The velocity of this

vehicle dramatically decreases in the period of 98260 < t < 98300. The inverse

of reaction time is set to be 0.01 lower than the threshold of the neutral stability

condition.
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Figure 2.2: Simulation results show that jamming transition occurs with increasing

velocity variance. Jamming state in a closed loop is composed of two states: the

free flow and jamming cluster states, which means that the variance of velocity is

different between the unjammed state and jammed state. Blue circles show how

velocity variance varies with time in a system with the same configuration as Fig

2.1. The Green dashed line shows the onset of jamming transition.

Tough Bando’s model is mathematically simple, it is usually criticized for poor

descriptions of real data. For instance, since the vehicle number is conserved in

Bnado’s model, it is hardly possible to reproduce the so-called ”synchronized flow”,

which shows the growing jamming region whose wave front is usually stationary on

the traffic bottleneck, such as ramps or shrinking of highway [33]. Other realistic

factors, such as open boundary conditions [34], also show insufficiences of Bando’s

model. Nonetheless, Bondo’s model still provides a possible way to understand

how these realistic factors influence the onset of instability. Since our research topic

is investigating how heterogeneity of traffic system due to individual difference

affects the onset of instability, some modifications of Bando’s are done in our

researches.

In the next section, the consideration of different driving behavior in a single

system will be considered, which means there are multiple time scales in a system

should be considered. The analytical and numerical results show the possibility

of jamming suppression due to the existence of such individual difference effect.
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Chapter 3

Effect of Individual Difference

3.1 Individual Difference

In the original optimal velocity model, one assumes that all drivers obey the

same acceleration rules. However, in reality, drivers exhibit different levels of

distance perception, hence different degrees of abruptness for drivers to adjust

the velocity are expected. In this section, we introduce individual difference,

specifically the difference in distance perception, to the optimal velocity model.

We show that individual difference in distance perception helps to prevent traffic

jam in the heavy traffic regime as discussed in detail below.

3.1.1 Linear Stability Analysis

The individual difference is introduced into the optimal velocity model by

assigning different value of w to each driver. Therefore, Eq. (2.3) becomes

ẍn =
V (wn∆xn)− ẋn

τ
, (3.1)

where

V (wn∆xn) = tanh(wn∆xn − h) + tanh(h). (3.2)

It is apparent that even if ∆xn’s are the same, drivers would have different desired

velocity V (wn∆xn) due to different distance perception. Although drivers are

different from one another, it does not seem too far-fetched to assume a simple

Gaussian distribution for wn. For simplicity, we assume a Gaussian distribution

for wn with mean w̄ = 1 and standard deviation σ. The steady state of the system

9



is obtained by requesting ẍn = 0 in Eq. (3.1). That is all drivers moving with the

same velocity but different distance to the vehicle in front, which means

wn∆x(0)
n = Constant (3.3)

With the constraint of the total length of closed loop
∑

n ∆xn = L, we obtain

x(0)
n =

n∑
i=1

∆x
(0)
i + v(0)t, (3.4)

where we set the location of the first vehicle to be at the origin of the moving

frame, and

∆x
(0)
i =

L

wi

(∑
j

1

wj

)−1

, (3.5)

v(0) = V (wn∆x(0)
n ). (3.6)

Similarly, we assume a perturbation yn(t) around the steady state, hence the

location of the nth vehicle is xn(t) = x
(0)
n + yn(t). Then the linearized equation of

yn(t) is readily obtained

ÿn +
1

τ
ẏn =

f1
τ
wn∆yn, (3.7)

where

f1 =
1

wn

∂V (wn∆xn)

∂∆xn

∣∣∣∣
∆xn=∆x

(0)
n

= sech2(wn∆x(0)
n − h). (3.8)

Substitute the Fourier expansion of yn(t), Eq. (2.7), into Eq. (3.7), we obtain

¨̃yk +
1

τ
˙̃yk =

f1
τ

∑
ℓ

ỹℓw̃k−ℓ

(
exp(iαℓ)− 1

)
, (3.9)

where w̃m is the mth Fourier amplitude of the Fourier transform of wn’s,

wn =

N/2∑
m=−N/2+1

w̃me
iαmn. (3.10)

It is interesting to note that Eq. (3.9) shows an intricate coupling between

the dynamics of perturbations and the spatial distribution of different distance

perception of drivers. It becomes an eigenvalue problem of coupled equations

with N degrees of freedom. And the eigenvalues clearly depend on how wn’s are

distributed. To generate spatially random and uncorrelated wn’s, we employ the

Gaussian random field with mean w̄ and standard deviation σ. The Gaussian
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random field is much easier to be produced in the Fourier space, see Ref. [35];

the ensemble average of the squared magnitude of the Fourier amplitude of the

individual difference w̃k is associated with w̄ and σ.

The calculation can be separated into two conditions:

Let’s define

M ≡
∫ ∏

i

exp
(
−(wi − w̄)2

2σ2

)
dwi

(1) k = 0

⟨|w̃k=0|2⟩ =
∫

w̃0w̃
∗
0

∏
i

exp
(
−(wi − w̄)2

2σ2

)
dwi

/
M

= w̄2. (3.11)

(2) k ̸= 0

⟨|w̃k ̸=0|2⟩ =
∫

w̃kw̃
∗
k

∏
i

exp
(
−(wi − w̄)2

2σ2

)
dwi

/
M

=
1

N2

∑
n

∑
m

eiαk(n−m)

∫
wnwm

∏
i

exp
(
−(wi − w̄)2

2σ2

)
dwi

/
M

=
1

N2

[
w̄2
∑
n ̸=m

eiαk(n−m) +
(
w̄2 + σ2

)∑
n=m

eiαk(n−m)

]

=
w̄2

N2

∑
n,m

eiαk(n−m) +
σ2

N

=
σ2

N
. (3.12)

It shows that the Fourier amplitude of the non-zero wavenumber mode would

be much smaller than that of zero wavenumber mode as N gets larger. Therefore,

we can analyze the system perturbatively by separating the coupling terms into the

unperturbed part which only associated with w̃0 (note that w̃0 = w̄) and the per-

turbed part which associated with w̃k ̸=0. By defining ỹT = (ỹ−N/2+1, ỹ−N/2+2, · · · , ỹN/2),

Eq. (3.9) can be re-written as

d2

dt2
ỹ +

1

τ

d

dt
ỹ =

f1
τ
(H0 +H1)ỹ, (3.13)

where

H0
kℓ = w̃0

(
exp(iαℓ)− 1

)
δkℓ, H1

kℓ = w̃k−ℓ

(
exp(iαℓ)− 1

)
(1− δkℓ). (3.14)

11



Obviously, H0 is treated as the unperturbed diagonal matrix, while H1 is treated as

the perturbed off-diagonal matrix. The eigenvalues of the unperturbed matrix are

exactly the eigenvalues for the original optimal velocity model where the individual

difference is absent. Note that, for each realization of the Gaussian random field,

f1 = sech2(wn∆x
(0)
n − h) would be slightly different due to the finite size effect.

However, if the variance of the Gaussian distribution is small, we can approximate

Eq. (3.5) as

wn∆x(0)
n = L

(∑
j

1

wj

)−1

≈ Lw̃0

N(1 + (σ/w̃0)2)
, (3.15)

which always leads to a smaller value compared to the case of identical drivers

(σ = 0). Therefore, a different value of f1 is expected, and the neutral stability

boundary of the system would differ from that for identical drivers.

Next, we proceed to discuss the correction to eigenvalues due to H1. The sta-

bility analysis for the original optimal velocity model shows that the most unsta-

ble Fourier mode occurs for the longest finite wavelength mode, see Eq. (2.10).

Since the perturbation does not affect the system dramatically, the stability

of the system can be determined once the correction to the eigenvalue for the

longest finite wavelength mode is known. The first order correction vanishes, since

⟨ϕ1|H1|ϕ1⟩ = 0 due to the fact that H1 is an off-diagonal matrix and |ϕ1⟩ is an

eigenvector composed solely of ỹ1. The second order correction to the eigenvalue

is λ
(2)
1 ,

λ
(2)
1 =

∑
k ̸=1

|w̃1−k|2(eiαk − 1)(eiα1 − 1)

w̃0(eiα1 − eiαk)
≃ − iσ2

w̃0

sinα1. (3.16)

See Appendix A. Hence, the governing equation of ỹ1, see Eq. (3.13), up to second

order perturbation is

¨̃y1 +
1

τ
˙̃y1 ≃

f1
τ
w̃0

(
cosα1 − 1 + i

(
1− σ2

w̃2
0

)
sinα1

)
, (3.17)

and the instability condition is modified accordingly,

f1 >
1

2τw̃0(1− σ2/w̃2
0)

2 cos2 (α1/2)
. (3.18)

Note that wn∆x
(0)
n also depends on σ2/w̃2

0, see Eq. (3.15), therefore it is expected

that the neutral stability boundary varies as a function of σ2/w̃2
0 according to the

above perturbation calculation. Fig. 3.1 shows how the phase boundary changes

12



with the individual difference. The threshold value of the reaction time τ of drivers

increases as σ/w̃0 increases for a specific vehicle density N/L = 1. At this vehicle

density and for a non-vanishing value of σ/w̃0, a higher threshold of reaction time

of drivers is expected, which means the traffic system would remains unjammed

even if the reaction of drivers becomes slower. In other words, the variation of

distance perception of drivers helps to inhibit the onset of the traffic jam. As

shown in Fig. 3.1, the area of the jammed state on the phase diagram reduces

with σ/w̃0, and the phase boundary is shown to vary quadratically with σ/w̃0.

Evidently, there is deviation between the theoretical phase boundary and the

simulation results when the individual difference increases. This comes from the

fact that the technique we use to approach the analytical solution is perturbation

method, and the strength of perturbation matrix is proportional to the square

of individual difference σ2. Therefore, as what we should expect, the analytical

solution becomes invalid when the influence of individual difference becomes ap-

parent. The suppression of jamming formations can be confirmed by inserting

individual difference into a system, which is experiencing the jamming transition.

See Fig. 3.2. This figure shows the fact that the existence of individual difference

can effectively suppress the onset of instability. A quantitative analysis is shown

in detail in the following section.
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Figure 3.1: Phase diagram of the traffic system. Note that τ0 is the threshold value

of the reaction time when the individual difference is absent (i.e., σ = 0). The

black line plots the neutral stability boundary of Eq. (3.18). Solid green squares

and solid blue triangles represent the jammed and unjammed state, respectively,

predicted from Eq. (3.18). Red circles are the simulation results of Eq. (3.1), which

is consistent with the prediction obtained by solving the eigenvalue problem (not

shown) of the coupled Eqs. (3.9). 100 realizations of Gaussian random fields are

carried out for each simulation data point. The phase diagram is obtained for

N/L = 1, h = 2, and N = 512.
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Figure 3.2: Jamming suppression due to the existence of individual difference.

Red dots are simulation for identical drivers under the unstable condition N = 32,

L = 32, and a = 1. After the variance of velocity increases over 0.035, the

individual difference with σ = 0.2 is distributed to the system. Blue squares show

the decreasing of velocity variance since individual difference is distributed to the

system. Obviously, jamming transition is suppressed and the system returns to

the free flow state.

The physical mechanism of the traffic jam can be analyzed by tracking how

a spatial disturbance of the location of a vehicle, yn, propagates through traffics.

Since drivers adjust their speed according to the distance to the vehicle in front,

the spatial disturbance of the location of one vehicle would give rise to a wave of

disturbances travelling backward. Drivers with poor distance perception (larger

w) tend to accelerate (or decelerate) more abruptly and overcorrect their speed.

Therefore, the amplification of the spatial disturbance is expected if more poor

distance perception drivers are in the traffic, which eventually leads to a traffic

jam. On the other hand, the drivers with good distance perception (smaller w)

would reduce the disturbance and keep the system stable. A quantitative analysis

is given as follows.
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3.1.2 Propagation of Disturbances

Now consider a system composed of N drivers with different wn in a closed

loop. All drivers are initially at their equilibrium locations, except the nth driver

whose location is slightly off by the amount of yn. Since all vehicles are in a

closed loop, the spatial disturbance is expected to travel back to itself repeatedly.

Therefore, one can assume yn = An(t)e
iΩt + c.c., where An(t) is the amplitude of

the disturbance wave and Ω characterizes the angular frequency of the wave, see

Ref. [8].

Since we are looking for the stability of the system near the neutral stability

boundary, An is expected to vary on a much slower time scale compared to 1/Ω.

Therefore, by assuming a negligible time derivative of An on the time scale 1/Ω,

we readily obtain, from Eq. (3.7), the disturbance propagation relation between

An−1 and An,

An−1 =
f1wn−1

Rn−1

e−iθn−1 An, (3.19)

where

Rn−1 =
√
(f1wn−1 − Ω2τ)2 + Ω2, (3.20)

θn−1 = tan−1

(
Ω

f1wn−1 − Ω2τ

)
. (3.21)

After the disturbance propagates through the traffic and come back to the nth

vehicle, the amplitude An is amplified by a factor of z ≡
∏N

j=1(f1wj/Rj). Note

that we have employed the fact that the sum of the phase difference θj over all

vehicles is simply 2π. If z is greater than unity, the traffic jam occurs. Since the

angular frequency of the wave decreases as the number of vehicles increase, in the

thermodynamic limit, z can be well approximated by an expansion in terms of Ω2

to the lowest order,

z =
∏
n

f1wn√
(f1wn − Ω2τ)2 + Ω2

≃ 1− N

2(f1w̃0)2

[(
1 + 3

σ2

w̃2
0

)
− 2τ(f1w̃0)

(
1 +

σ2

w̃2
0

)]
Ω2. (3.22)

See Appendix 5. By requiring z > 1, it gives the criterion for the instability to

occur

f1 >
1

2τw̃0

(
1 + 2

σ2

w̃2
0

)
+O

(
σ4

w̃4
0

)
, (3.23)
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which is consistent with Eq. (3.18) to the lowest order of (σ/w̃0)
2 in the thermody-

namic limit. To further explore the individual difference effect on the instability

quantitatively, we expand f1 in terms of (σ/w̃0)
2. The neutral stability boundary

is readily obtained to the lowest order of (σ/w̃0)
2,

1

τ
= 2 sech2(γ) + β

σ2

w̃0
2 , (3.24)

where

γ =
Lw̃0

N
,

β = 4 sech2(γ − h)
(
γ tanh(γ − h)− 1

)
. (3.25)

The inverse of the threshold value of the relaxation time τ is expected to exhibit

a power law relation with (σ/w̃0). Simulation results for 512 vehicles of various

densities are shown in Fig. 3.3; the inverse of the threshold value of τ is shown

to be well fitted by a quadratic relation of σ/w̃0 for log10(σ/w̃0) < −0.699. It

is interesting to note that the individual difference inhibits the onset of jamming

instability at high vehicle densities where β < 0. Below a critical density where

β > 0, the individual difference promotes the jamming transition instead.
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Figure 3.3: A log-log plot of simulation results of the deviation of 1/τ from 1/τ0

as a function of σ/w̃0 for various global vehicle densities ranging from N/L = 0.2

to N/L = 1. The simulation results are well fitted by a power law relation with

an exponent of 2. The simulation results are obtained with parameters h = 2 and

N = 512.

Figure 3.4 shows how β changes with the inverse of the vehicle density. The

value of β is always negative at high vehicle densities and positive at low vehicle

densities regardless of the shift h of the velocity function, which can be understood

as follows. The steady state velocity of vehicles for drivers with different distance

perception is a bit smaller than that for identical drivers due to the decreasing

distance to the front vehicle at equilibrium state compared with the distance when

drives are identical, see Eq. (3.15). Since the onset of the instability comes down

to the competition between the driver’s reaction time and how fast the desired

velocity changes as the distance to the front vehicle varies, a smaller interval

means that drivers in the system will perceive density higher than the global

density. This change will influence the system differently in the high and low

densities. At high vehicle densities, the smaller interval will smoothen the desired

velocity changes. However, at low vehicle densities, it will sharpen the changes.

The underlying physics can be interpreted as follows: since drivers in a system with

high density already drive slowly, they will drive even slower when they perceive

18



that the interval to the front vehicle decreases, and consequently smooth out the

changes in their desired velocity. Therefore, the rate of change of the desired

velocity is less sensitive to the distance change, which inhibits the traffic jam in

high density regions. On the contrary, at low vehicle densities, since the decrease

of the interval to the front vehicles causes drivers who can originally drive freely are

thereby required to decelerate more drastically, which increases the changing rate

of the desired velocity as the distance to the front varies. Thus, when compared to

identical drivers, drivers with individual difference tend to decelerate or accelerate

more abruptly as the distance to the front changes which makes the traffic system

more vulnerable to the traffic jam.

Figure 3.4: Plot of the coefficient β as a function of γ for different values of h. β

is always negative at high vehicle densities which inhibits the jamming transition,

while β becomes positive at low vehicle densities which promotes the jamming

transition. The value of h characterizes the rate change of the velocity function

as the headway changes which uniquely determines the critical vehicle density at

which β = 0.

The Fig 3.4 also implies another important restriction to our analytical solu-

tions. As what we mentioned in the previous section, the strength of second order

perturbation is proportional to the square of individual difference. However, this

figure shows that the coefficient of σ2 will be zero under some conditions, which

means the strength of second perturbation goes to zero, and our analytical predic-
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tions will become invalid under these condition. To make the analytical solutions

more accurate, one should take the next level of perturbation into consideration.

In this section, we propose another way to approach the neutral stability con-

dition of jamming transition. The investigation of disturbance propagation not

only help us to understand the mechanism behind jamming suppression due to the

existence of individual difference but also simplify the calculation process. This

method has significant advantage if we want to understand the mechanism of het-

erogeneity in models with complicated realistic factors. In order to discuss the

universality of the effect of individual difference, in section 3.2, heterogeneity of

different kinds of individual difference will be introduced, and the derivation of

neutral stability condition is similar to the process in this section.

3.1.3 Irrelevance of Spatial Ordering of Vehicles

In the above analysis of disturbance propagation, the stability of a traffic sys-

tem depends on the amplifying factor z, see Eq. (3.22), which involves a product

of wj/Rj of each vehicle. Since the product is invariant as one switches the spatial

ordering of vehicles, the jamming transition of traffic systems is uniquely deter-

mined for the same group of drivers regardless of their spatial ordering. One could

reach the same conclusion by solving the eigenvalue problem formulated before,

see Eq. (3.7). For a given set of wn’s, the characteristic equation remains invariant

as one reshuffles the spatial ordering of vehicles.

Figure 3.5 shows the simulation results of the amplitude for the slowest decay-

ing eigenvector over time for 16 vehicles. The numerical simulations are carried

out in the unjammed region that is close to the neutral stability boundary, and

six different configurations of the spatial ordering of vehicles generated by random

reshuffling are employed. In the linear regime, simulations show that dynamical

behaviors for the slowest decaying eigenvector are identical for all six configura-

tions. It is interesting to note that our calculation indicates that the stability of

the traffic systems would be the same even for traffic systems that allow vehicles

to switch order.
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Figure 3.5: The amplitude of the slowest decaying eigenvector over time for sim-

ulations of 16 vehicles, N/L = 1, σ/w̃0 = 0.176, and τ = 1.096 in the unjammed

region. Six different spatial configurations are generated by reshuffling the order-

ing of vehicles. Different symbols represent different configurations. Note that the

amplitude oscillates with time, and only the peak values are shown.
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3.2 Universality of The Effect of Individual Dif-

ference

It is intuitive that, in addition to the relative distance, the relative velocity

to the vehicle in the front would also influence drivers’ action to accelerate or

decelerate. Based on the concept shown in Ref. [14, 32], we propose a generalized

traffic model incorporated with the individual difference,

ẍn =
1

τ

[
V1(wn∆xn) + λV2(gn∆vn)e

−wn∆xn/R − ẋn

]
, (3.26)

where V1 is the same optimal velocity function introduced before, V1(wn∆xn) =

tanh(wn∆xn − h) + tanh(h). And the second term is the additional acceleration

due to the relative velocity, where

V2(gn∆vn) = tanh(gn∆vn), (3.27)

so that the driver slows down (speed up) when its velocity is faster (slower) than

the vehicle in the front. Note that wn’s and gn’s are populated with Gaussian

random fields with mean w̄ and ḡ, and standard deviation σw and σg, respectively.

The exponential decay term describes the distance-dependent interaction to the

vehicle in the front, and R characterized the interaction length. It is clear that,

at higher vehicle densities, the acceleration due to the relative velocity is more

pronounced since wn∆xn/R is relatively smaller. Finally, λ represents the relative

strength of the influence of the second term to the first term.

We employ the same disturbance propagation analysis to calculate the neutral

stability boundary of this system. In the thermodynamic limit, and to the lowest

order expansion of (σw/w̃0)
2 and (σg/g̃0)

2, the onset of the instability occurs when

f1 >
1

2τw̃0

(
1 +

2σ2
w

w̃2
0

)
+

λg̃0
τw̃0

(
1 +

2σ2
w

w̃2
0

− 2Cov (w, g)
w̃0g̃0

)
e−wn∆x

(0)
n /R, (3.28)

where Cov(w, g) is the covariance of wn and gn. In the limit λ → 0, Eq. (3.28) sim-

ply rediscovers the instability criterion derived in Eq. (3.23). First, let us consider

the case where wn and gn are independent from each other, which means individ-

ual’s distance perception is uncorrelated to individual’s awareness of the relative

velocity, hence, Cov(w, g) = 0. The neutral stability boundary as a function of
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(σw/w̃0)
2 is shown Fig. 3.6. At high vehicle densities, the individual difference fur-

ther inhibits the jamming transition as the relative velocity dependent acceleration

rule is considered. The unjammed phase space opens up while the jammed phase

space is further suppressed as the variation of distance perception increases, see

the comparison of Fig. 3.1 and Fig. 3.6. It is quite intuitive since, if the distance

to the vehicle in the front is close, the relative velocity dependent acceleration

would slow down the vehicle as the vehicle in the front is slower. This mechanism

helps to maintain distance between vehicles effectively, therefore, it suppresses the

jamming transition. In addition, let us consider the other case where wn equals to

gn, which means the driver who accelerates abruptly due to the change of the rela-

tive distance would also accelerate abruptly due to the change of relative velocity,

hence, Cov(w, g) = σ2
g = σ2

w. Similar trend of the neutral stability boundary is

observed, see Fig. 3.6. However, the correlation between wn and gn shrinks the

unjammed phase space a little bit, since more abrupt change in the desired veloc-

ity makes the system easier to be jammed. On the contrary, it is expected that

an anti-correlated wn and gn would help to inhibit traffic jam.
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Figure 3.6: Phase diagram of the traffic system shown in Eq. (3.26). The black

line plots the neutral stability boundary of Eq. (3.28) for Cov(w, g) = 0, and

solid green squares and solid blue triangles represent the jammed and unjammed

state, respectively. Numerical simulations of Eq. (3.26) for Cov(w, g) = 0 are

shown in red circles. Orange diamonds and dotted line represent the result of

simulations and analytical results, respectively, for the scenario where wn = gn.

100 realizations of Gaussian random fields are carried out for each simulation data

point. The phase diagram is obtained for R = 1, λ = 1, N/L = 1, h = 2, and

N = 256.
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Chapter 4

Phenomenon and Simulation

Results

The advantages of microscopic models are that they provide a way to under-

stand the mechanics behind phenomenon in traffic systems. One of them is the

”phantom traffic jam”, which we have introduced in the introduction. In Bando’s

model, this phenomena can be explained as the competition between drivers’ re-

action times and intensity of changing drives’ desired velocity due to varying the

interval in front. Nonetheless, there are still many intriguing problems in traffic

systems that remain unclear. In this chapter, phenomenon that can be partially

reproduced by the Bando’s and our model will be illustrated.

4.1 Hysteresis-like Phase Diagram

In chapter 2, we have shown the spontaneous phase separation when the traffic

system transits from free flow into a jamming state. Since the system in Bando’s

model is closed, some local clusters of jamming state enclosed by free flow must

be formed due to the number conservation. Therefore, most vehicles in a traffic

system are either in clusters or in free flow. In 1994, Bando et al. observed

that in the ∆x − v phase space, all vehicles in a traffic system will undergo a

hysteresis-like close loop with two universal endpoints, A = (∆xC , vC) and B =

(∆xF , vF ), which are uncorrelated with the configuration of the system [21]. See

Fig 4.1. It is interesting to note that the system is mainly composed of free flow
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states and jamming states, with only a few vehicles on the interface between two

states. Therefore, we can make use of this property with number conservation to

approximate the backward velocity vback of clusters. That is

vF
∆xF

− vC
∆xC

=

(
1

∆xF

− 1

∆xC

)
vback. (4.1)

Thus, the backward velocity is

vback =
∆xCvF −∆xFvC

∆xF −∆xC

. (4.2)

See Figure 4.2.

Figure 4.1: Hysteresis-like loops in the phase space of two systems with same

vehicle numbers but different track lengths. The hysteresis loops formed by these

two systems have the same size, which shows the irrelevance of hysteresis loops on

the system size. Two simulations are done under configuration N = 512, τ = 1,

and h in the optimal velocity function is set at 2.
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Figure 4.2: Propagation of wave front of the cluster. Simulations results show

perfect predictions of analytical solutions. The simulation results are obtained for

N = 512, L/N = 1.5, τ = 1, and drivers are identical.

However, the empirical data shown in Fig 4.3 from Ref [1] reveals that the

hysteresis loops in real traffic are not a single loop but widely scattered in the

∆x − v phase diagram. One possible way to regenerate this widely scattered

hysteresis loops is taking individual differences into account. See Fig 4.4.

Figure 4.3: Empirical data in clearance-velocity phase space in Ref [1] Wide scat-

tered data shows insufficiency of Bando’s model. The parameters S and ẋ in figure

correspond to ∆x and v, respectively, in our notation.
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Figure 4.4: Widely scattered hysteresis loop obtained for individual difference

σ = 0.15, N = 512, L/N = 1.5, and the relaxation time is set 0.05 beneath the

threshold of neutral stability condition. Since there is no stationary state for a

system with an individual difference, the shape of the hysteresis-like loop will vary

with time, but widely scattered property accompany by individual differences is

universal.
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4.2 Scattering Fundamental Diagram

Another most intriguing but unclear phenomena is the scattering of density-

flow fundamental diagram in the high-density region. See Fig 4.5 from Ref [2].

The wide scattering data means there is no definite relationship between traffic

density and traffic flow. In recent years, scientists tried to analyze the mechanics

behind this phenomena from different perspectives, such as interaction due to

the lane changing process. In 1999, Treiber et al. simulated the macroscopic,

gas-kinetic-based model, with considerations of different kinds of vehicles, such as

trucks and cars in their researches. It was found that the fundamental diagram

coming from the simulation with the existence of individual differences is similar

to the empirical data. See Fig 4 in Ref [28]. In addition, a recent study by Tang et

al. show the possible relationship between individual difference and the scattered

data.

Figure 4.5: Empirical wide scattered fundamental diagram obtained by B. S.

Kerner et al. in Ref [2]. Wide scattered data in the figure shows unclear correla-

tions between traffic density ρ and traffic flow q.

The widely scattered data in Fig 4.4 also implies the possible relationship be-

tween individual differences and widely scattered fundamental diagram. Simula-

tion results are shown in Fig 4.6. Since the mean-field concept of density prohibits

the dramatic changing of physical parameters in a unit volume element, the sim-

ulation data exclude drivers who locate at the phase boundary. Therefore, traffic

density is defined as the inverse of the average value of intervals between drivers
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and the nearest vehicles in front only in jamming or free flow states, and traffic

flow is obtained by multiply the density and the corresponding average velocity.

Figure 4.6: Simulation fundamental diagram obtained for N = 512, τ = 1, σ = 0.3,

and multiple different global densities N/L = 1/1.2, 1/1.3, 1/1.4, 1/1.5, 1/2.8,

1/2.9, 1/3. Numerical results show a possible relationship between wide scattered

fundamental diagram and individual difference.

In this chapter, phenomenon with wide scattered properties in the ∆x−v phase

space and the fundamental diagram are introduced. Simulation results show the

potential relationship between widely scattered data and the individual difference.

Nonetheless, the mechanisms behind these phenomenon are still unclear since they

can only be observed after the system has experienced jamming transition, which

means analytical analysis must be extended to nonlinear regions and analytical

solutions are always difficult to be deduced. Even though the difficulties in obtain-

ing analytical solutions in nonlinear regions, Nagatani et al. presented a possible

method to approach analytical solutions in weak nonlinear regions [36]. Therefore,

it is our interest to understand the influence of individual differences in weak non-

linear regions in our future works. Other possible future works will be organized

in the next chapter.
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Chapter 5

Summary and Discussion

We investigate how the individual difference of drivers affects the jamming

instability by implementing different distance perceptions using Gaussian random

fields in Bando’s optimal velocity model. Both simulation results and perturbation

calculations show that, at high vehicle densities, the onset of the jamming insta-

bility is effectively suppressed if individual differences are introduced. Contradic-

torily, the instability is augmented at low vehicle densities. To further understand

the physical mechanism of jamming instability, we analyze how the spatial dis-

turbance in the relative distance propagates through the traffic. We find that

drivers with good distance perception reduce the disturbance while drivers with

poor distance perception amplify it. Therefore, we show that whether the insta-

bility occurs depends on the overall distribution of the distance perception rather

than the details of the spatial ordering of vehicles. This indicates that the indi-

vidual difference of drivers would also suppress the traffic jam for traffic systems

that allow vehicles to pass by one another.

The universality of individual difference induced jamming suppression can be

further elucidated by considering a more general form of the desired velocity. We

get

ẍn =
V (wn∆xn, gn∆vn)− ẋn

τ
, (5.1)

where V (wn∆xn, gn∆vn) is the generalized desired velocity which monotonically

increases as the distance to the vehicle in the front increases or as the relative

velocity increases. Employing the disturbance propagation analysis, we find that
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the onset of the instability occurs when

Vx >
1

w̃0τ

[(
1 +

2σ2

w̃2
0

)(
1

2
+ Vvg̃0

)
− 2VvCov(w, g)

w̃0

]
, (5.2)

where Vx = (∂V /∂∆xn)/wn and Vv = (∂V /∂∆vn)/gn, both evaluated at ∆xn =

∆x
(0)
n and ∆vn = 0. It is clear that the jamming instability is influenced by in-

dividual differences in several different aspects. First, the slight decrease in the

steady state velocity due to the variation of individual distance perception gives

rise to a relatively slow change in the desired velocity as the distance changes at

high vehicle densities and vice versa, which inhibits and promotes the jamming

transition at high and low vehicle densities, respectively. This conclusion is uni-

versal since the desired velocity function has to saturate to certain values at both

ends of the vehicle density, which warrants an inflection point (density) for the

desired velocity function. Therefore, the rate of the change in the desired velocity

due to variation of distance perception would be either smaller or larger depending

on the vehicle density. Past work has shown that the inflection point is crucial in

analyzing nonlinear wave in the jammed state [15, 36, 37, 38, 39]. Second, the term

Vvg̃0 always inhibits the jamming transition since the relative velocity dependent

acceleration would effectively help to maintain proper distance between vehicles.

Furthermore, the correlation between the distance perception and relative velocity

awareness of drivers is shown to affect the jamming transition as well, since the

correlation could further enhance the abruptness of the velocity change.

In this study, we show that the individual difference has a pronounced effect

on the onset of the jamming instability. However, mechanisms for influencing

jamming transition in real traffic due to heterogeneity remain unclear. For exam-

ple, it has been observed that one heterogeneity in traffic system is the log-normal

distribution of perception-reaction time, which might be interpreted as drivers’

reaction time [40, 41]. The analytical process should be slightly modified since the

random field property in Fourier space might be different between Gaussian and

log-normal distribution. Also, Bando’s model has been criticized for being poor at

reproducing real traffic, such as synchronized flow in empirical three phases model

[33]. This is because there are plenty of artificial, unreal assumptions used in the

optimal velocity model, such as closed systems. It has been shown that there exists

a richer phase diagram in an open system [34]. In 2003, Trieber et al. introduced
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a simple ”memory effect” into the one-dimensional intelligent driver model, and

presented a possible way to regenerate synchronized flow in open traffic systems

without taking drivers’ individual difference, lane changing behaviors, and ramps

into account [42]. Nevertheless, Bando’s model still provides a probable way to

approach the real traffic, and similar results might be possible by introducing these

effects into the optimal velocity model.

Therefore, it is of interest to extend the current model to explore how the indi-

vidual difference affects the traffic flow, in particular, of the jammed state under

more realistic conditions. That is to see the effect of individual differences on

the relation between the traffic flow and the vehicle density (i.e., the fundamental

diagram). Since we have shown that the variation of distance perception leads

to changes in the steady-state velocity, the individual difference could be respon-

sible for the wide scattering nature of the fundamental diagram. Furthermore,

investigation of the influences of heterogeneity due to individual difference can be

extended to nonlinear regions.

In conclusion, this work discusses how individual differences influence the onset

of jamming transition when the traffic system is set as a single lane in a closed-

loop, and passing is prohibited. Jamming suppression in high density is observed

when individual differences exist, and the onset of jamming transition is irrelevant

of drivers’ spatial order. But there are still other interesting prospects that we

can investigate in our future works. For example, the influence of heterogeneity

when taking other realistic factors into account. Different behaviors in nonlinear

regions between identical drivers and drivers with individual differences is also an

intriguing topic.
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Appendix

A. Calculation of second perturbation

According to the equation (3.14), the zeroth order perturbation of mth Fourier

mode is

λ(0)
m = w̃0

(
eiαm − 1

)
. (3)

Since the ensemble average of non-zero Fourier mode amplitude of Gaussian

random field is σ2/N . The second order perturbation can be rewritten as

λ(2)
m =

∑
k ̸=m

|w̃m−k|2 (eiαm − 1) (eiαk − 1)

w̃0 (eiαm − eiαk)

≃ σ2

Nw̃0

∑
k ̸=m

(eiαm − 1) (eiαk − 1)

(eiαm − eiαk)

=
σ2

Nw̃0

∑
k ̸=m

(eiαm − 1) (eiαk − 1) (e−iαm − e−iαk)

(eiαm − eiαk) (e−iαm − e−iαk)

=
σ2

Nw̃0

∑
k ̸=m

(eiαm+k − eiαk − eiαm + 1) (e−iαm − e−iαk)

2− eiαk−m − eiαm−k

=
σ2

Nw̃0

∑
k ̸=m

eiαk − eiαk−m − 1 + e−iαm − eiαm + 1 + eiαm−k − e−iαk

2− 2 cosαk−m

(4)

Let n = k −m, we can deduce

λ(2)
m =

σ2

Nw̃0

∑
n ̸=0

eiαn+m − e−iαn+m − eiαn + e−iαn + e−iαm − eiαm

2− 2 cosαn

=
iσ2

Nw̃0

∑
n ̸=0

sinαn cosαm + cosαn sinαm − sinαn − sinαm

1− cosαn

=
iσ2

Nw̃0

∑
n ̸=0

(sinαn cosαm + cosαn sinαm − sinαn − sinαm) (1 + cosαn)

sin2 αn

.

(5)
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Since

(sinαn cosαm + cosαn sinαm − sinαn − sinαm) (1 + cosαn)

= sinαn cosαm + cosαn sinαm − sinαn − sinαm

+ cosαn sinαn cosαm + cos2 αn sinαm − cosαn sinαn − cosαn sinαm

= sinαn cosαm − sinαn + cosαn sinαn cosαm − sin2 αn sinαm − cosαn sinαn.

Therefore

λ(2)
m =

iσ2

Nw̃0

(
−N sinαm +

∑
n ̸=0

sinαn cosαm − sinαn + cosαn sinαn cosαm − cosαn sinαn

sin2 αn

)

=
iσ2

Nw̃0

(
−N sinαm +

∑
n ̸=0

cosαm − 1 + cosαn cosαm − cosαn

sinαn

)
.

(6)

The second identity is zero because no matter what the number of vehicles N

is, we can always find the counterpart in equation(6) such that the summation

would be vanished. For example we can find

1

sinαj

+
1

sinα−j

= 0. (7)

Since the summation doesn’t include the zero-th mode. The only term we can’t

find the counterpart to eliminate is when the number of vehicles N is even number

and k = −N/2, which means αn = −π. However, since

lim
αn→−π

cosαm − 1 + cosαn cosαm − cosαn

sinαn

= 0. (8)

we can reduce the second perturbation to

λ(2)
m = − iσ2

w̃0

sinαm. (9)

The equation of motion about kth Fourier mode up to second perturbation can be

write as
¨̃yk +

1

τ
˙̃yk =

f

τ
w̃0

(
cosαk − 1 + i

(
1− σ2

w̃2
0

)
sinαk

)
(10)

The phase boundary can be found by assuming the periodic motion of Fourier

mode ỹk ∝ eivt, v ∈ R. Thus v = fw̃0

(
1− σ2

w̃2
0

)
sinαk

−v2 = f
τ
w̃0 (cosαk − 1)

(11)
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Combining these two equations, we can get the boundary condition will be

f =
1

2τw̃0 (1− σ2/w̃2
0)

2 cos2(αk/2)
(12)
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B. Calculation of propagation distribution

The equation (3.22) shows the stability of traffic system can be determined by

multiplication

z ≡
∏
n

fwn√
(fwn − Ω2τ)2 + Ω2

.

Thus
1

z2
=
∏
n

(fwn − Ω2τ)
2
+ Ω2

f 2w2
n

=
∏
n

f 2w2
n − 2fwnΩ

2τ + Ω4τ 2 + Ω2

f 2w2
n

≃
∏
n

(
1− 2Ω2τ

fwn

+
Ω2

f 2w2
n

)
≃ 1 +

∑
n

(
−2Ω2τ

fwn

+
Ω2

f 2w2
n

)
.

(13)

Since ∑
n

1

wn

=
∑
n

1

w̃0 (1 + ∆n/w̃0)

≃ 1

w̃0

∑
n

(
1− ∆n

w̃0

+
∆2

n

w̃2
0

)
=

N

w̃0

(
1 +

σ2

w̃2
0

)
,

and ∑
n

1

w2
n

=
∑
n

1

w̃2
0 (1 + ∆n/w̃0)

2

=
∑
n

1

w̃2
0 (1 + 2∆n/w̃0 +∆2

n/w̃
2
0)

2

≃ 1

w̃0

∑
n

(
1− ∆n

w̃0

− ∆2
n

w̃2
0

+ 4
∆2

n

w̃2
0

)
≃ 1

w̃0

∑
n

(
1− ∆n

w̃0

+ 3
∆2

n

w̃2
0

)
=

N

w̃0

(
1 + 3

σ2

w̃2
0

)
.

We can deduce the multiplication up to the second order of individual difference

σ

1

z2
= 1 +

(
−2τ

f

N

w̃0

(
1 +

σ2

w̃0

)
+

1

f 2

N

w̃2

(
1 + 3

σ2

w̃2
0

))
+O

(
σ4
)

(14)
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Then

z =
1√

1 +
(
−2τ

f
N
w̃0

(
1 + σ2

w̃0

)
+ 1

f2
N
w̃2

(
1 + 3 σ2

w̃2
0

)) (15)

≃ 1− 1

2

[
−2τ

f

N

w̃0

(
1 +

σ2

w̃0

)
+

1

f 2

N

w̃2

(
1 + 3

σ2

w̃2
0

)]
(16)

= 1− N

2(fw̃0)2

[(
1 + 3

σ2

w̃2
0

)
− 2τfw̃0

(
1 +

σ2

w̃0

)]
+O

(
σ4
)

(17)
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